Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease?

نویسندگان

  • Sophie V. Precious
  • Rike Zietlow
  • Stephen B. Dunnett
  • Claire M. Kelly
  • Anne E. Rosser
چکیده

Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P165: Therapeutic Potentials of Stem-Cell-Based Therapy for Parkinson\'s Disease; Current Status of Human Endometrium-Derived Mesenchymal Stem Cells

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by motor and non-motor symptoms. It is expected to impose an increasing economic and social burden on human populations. The motor symptoms of PD are well known, including age-dependent uncontrollable resting tremor, bradykinesia, rigidity, posture instability. In the non-motor symptoms, cognitive changes, d...

متن کامل

Behavioral study of effects of mesenchymal stem cells transplant on motor deficits improvement in animal model of Huntington\'s disease

Introduction: As an inherited neurodegenerative disease, Huntington's disease is accompanied with wide neuronal degeneration in neostriatum and neocortex. Progress of the disease causes disabling clinical effects on movements, recognition and physiology of the body, and finally results in death. At this stage of knowledge we are, there is no effective therapeutic strategy for diminishing the mo...

متن کامل

Potential use of Dental Pulp Stem Cell in Laboratory Studies and Clinical Trials

Stem cell-based therapy has great potential in treating health conditions including cardiovascular, autoimmune, type I diabetes, neurodegenerative and bone and cartilage diseases also in spinal cord injuries, malformations and cancer. In addition to their potential use to treat systemic diseases, stem cell-based therapy also provides a powerful tool to treat oral and dental diseases such as cra...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

Platelet Rich in Growth Factors (PRGF): A Suitable Replacement for Fetal Bovine Serum (FBS) in Mesenchymal Stem Cell Culture

Background: Due to high differentiation potential and self-renewality, Mesenchymal Stem Cells are now widely considered by researchers in several diseases. FBS is used as a supplement in culture media for proliferation, differentiation, and other culture processes of MSCs, which is associated with transmission risk of a variety of infections as well as immune responses. PRGF derived from platel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 106  شماره 

صفحات  -

تاریخ انتشار 2017